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Abstract

Genome-wide association studies have successfully identified thousands of loci for a range of
human complex traits and diseases. The proportion of phenotypic variance explained by sig-
nificant associations is, however, limited. Given the same dense SNP panels, mixed model
analyses capture a greater proportion of phenotypic variance than single SNP analyses but
the total is generally still less than the genetic variance estimated from pedigree studies. Com-
bining information from pedigree relationships and SNPs, we examined 16 complex anthropo-
metric and cardiometabolic traits in a Scottish family-based cohort comprising up to 20,000
individuals genotyped for ~520,000 common autosomal SNPs. The inclusion of related indi-
viduals provides the opportunity to also estimate the genetic variance associated with pedi-
gree as well as the effects of common family environment. Trait variation was partitioned into
SNP-associated and pedigree-associated genetic variation, shared nuclear family environ-
ment, shared couple (partner) environment and shared full-sibling environment. Results dem-
onstrate that trait heritabilities vary widely but, on average across traits, SNP-associated and
pedigree-associated genetic effects each explain around half the genetic variance. For most
traits the recently-shared environment of couples is also significant, accounting for ~11% of
the phenotypic variance on average. On the other hand, the environment shared largely in the
past by members of a nuclear family or by full-siblings, has a more limited impact. Our findings
point to appropriate models to use in future studies as pedigree-associated genetic effects
and couple environmental effects have seldom been taken into account in genotype-based
analyses. Appropriate description of the trait variation could help understand causes of intra-
individual variation and in the detection of contributing loci and environmental factors.
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Author Summary

Unravelling overall trait architecture of complex traits and diseases is important for phe-
notype prediction and disease prevention and correct modelling of the trait will further aid
discovery of causative loci. Here we take advantage of genome-wide data and a large fam-
ily-based study to examine the role of common genetic variants, pedigree-associated
genetic variants, shared family environment, shared couple environment and shared sib-
ling environment on 16 anthropometric and cardiometabolic traits. By analysing up to
~20,000 Scottish individuals, we find that common genetic variants, pedigree-associated
genetic variants and recently-shared environment of couples are the most important con-
tributors to variation in these traits, while past family and sibling environment have a lim-
ited impact. Further studies on the pedigree-associated genetic variation and the shared
couple environment effect are needed, as little research has been devoted to them so far.

Introduction

Phenotypic variation for a quantitative trait is attributable to the summed effects of genetic and
environmental influences together with any covariances and interactions. The proportion of
phenotypic variance contributed by genetic variation is termed the heritability (h*) [1]. The
heritability scales the influence of genetic and environmental factors on phenotypic variation.
This provides us with insights into the genetic and environmental architecture of human com-
plex traits and our potential ability to dissect out loci associated with trait variation and is also
useful for the prediction of heritable disease risk [2,3]. As a consequence, such knowledge is of
potential value for clinical diagnosis, therapy, prevention and prognosis [4]. Therefore, obtain-
ing unbiased estimates of variation caused by different factors and the heritability of traits rele-
vant to health and disease processes is important.

A classic approach to gauging the heritability in humans is by comparing the observed phe-
notypic similarity to the expected genetic resemblance between relatives inferred from family
pedigrees [5]. This method evaluates the pedigree based heritability (k) indirectly without

requiring information on the inheritance of individual loci and thus, is quite practical and still
widely-used in twin, family and other pedigree studies [6,7]. Note that, 2, is often considered
to be an estimate of the true heritability h*. Genome-wide association studies (GWAS), on the
contrary, identify causal loci through their association with recorded genetic markers and then
aggregate the proportion of variance explained by statistically-significant variants [8,9], which
is sometimes referred to as the “GWAS heritability” (h,,,,). Each approach has its limitations
and drawbacks. Pedigree studies require genealogical information from known relatives to
deduce their expected genetic resemblance and /7, may be biased due to the factors shared
among relatives (including dominance, epistasis, common environment, genetic-by-environ-
ment correlation and genetic-by- environment interaction) if such effects are present and the
available pedigree structure does not allow these to be accounted for in the analysis [10-12].
Although GWAS have been very successful at discovering novel loci for a range of polygenic
disease and complex traits, they have been less successful at capturing the full extent of known
trait genetic variance [11,12]. This is probably because of their failure to detect particular types
of variants such as common variants with small effects, rare variants, copy number variants
and structural variants, as a consequence of inadequate sample size, genotyping platform
design and analyses used, together with the stringent statistical tests applied [10,13,14]. Asa
result, there usually is a substantial gap between the estimates of 17, and hZ,,, ,, often termed

the “missing heritability” [11,15].
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Recently, Yang et al. [16,17] have championed an approach, known as GREML [18], to esti-
mate the amount of trait variance explained by SNPs. The estimation of the SNP (or genomic)
heritability (h?), which refers to the additive genetic effects captured by genotyped SNPs, utilises
a matrix comprising realised genetic relationships inferred from genomic marker data originally
gathered for GWAS (known as genomic relationship matrix or GRM) [16,17]. The hz, estimate

from this approach, when estimated using unrelated individuals, lies between the i, and hZ,,, ¢

estimates, and has been considered as a lower limit for the former and an upper limit for the latter

[11,12]. As an example, for height, hZ,, ., h; and h;e , from three different studies are 0.10, 0.45

and 0.80 respectively [5,8,17]. This suggests that a substantial proportion of the genetic contribu-
tion to trait variation is SNP-associated and hence contributes to 2 but not all this variation is
detected by current GWAS, probably due to a combination of insufficient sample size and strin-
gent significant thresholds employed. The difference between h; and h,, may be largely due to
trait associated variants not in linkage disequilibrium (LD) with genotyped SNPs, such as rare
variants, copy number variants (CNV) and other structural variants as mentioned above. Varia-
tion associated with such effects is captured by 1, due to strong LD in relatives [19].

Recent studies have started dissecting the heritable component of variation and other com-
ponents shared among relatives by studying more complex populations made-up of both unre-
lated individuals and extended pedigrees [11,12,19]. For instance, Zaitlen et al. [12] have
demonstrated that simultaneously including in a GREML analysis a GRM and a modified
GRM (in which entries smaller than a certain threshold in the GRM are set to zero) can be
used to jointly estimate SNP-associated and total heritabilities in the presence of relatives. We
also note that shared environment may be an important contributor to heritability inflation
when close relatives are included in analysis.

In this study, we use data from a single homogeneous cohort consisting of approximately
20,000 adults with varying degrees of relationships sampled from Scotland. The individuals
have data on over 520,000 SNPs distributed across the autosomes. The dense marker informa-
tion together with extended genealogical information allows us to partition the phenotypic var-
iance and explore the genetic and environmental effects shared among related individuals
(both biological relatives and couples).

We analyse eight anthropometric traits, comprising height, weight, fat, body mass index
(BMI), hips, waist, waist-to-hips ratio (WHR) and a body shape index (ABSI) [20] and eight
cardiometabolic traits, comprising levels of creatinine, urea, total cholesterol (TC) and high
density lipoprotein (HDL) in serum, level of glucose in blood, systolic blood pressure (SBP),
diastolic blood pressure (DBP) and heart rate (HR).

In our work, we implement alternative models to estimate effects that might contribute to
the variation in the 16 traits analysed. Results show that, with these data, we can separate total
genetic variation into SNP-associated and pedigree-associated genetic influences. We also
observe that past family environment and shared full-sibling environment generally have a lim-
ited impact on trait variation, whereas the effect in couples of living in the current (shared)
environment is always important in our data.

Results
Overview of the methods

We conducted variance component analyses to dissect the phenotypic variation for traits
recorded in the Generation Scotland: Scottish Family Health Study (GS:SFHS) cohort [21] into
genetic and environmental factors. Analyses utilised a mixed-model approach implemented in
a restricted maximum likelihood (REML) framework using the GCTA software [16]. The
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population was divided into two tranches of approximately equal size and genotyped in two
stages. All initial analyses were performed with the first 10,000 genotyped individuals, (named
GS10K). GS10K comprised small nuclear families (largely two parents and two offspring)
together with unrelated individuals, although inevitably there were second degree and more
distant relationships included. The second tranche completed the genotyping of the rest of the
population (another 10,000 individuals) including further relatives in incomplete families (e.g.
missing samples from parents and additional siblings, as well as other relationships), resulting
particularly in a proportional increase in the number of second and third degree relationships
(Table 1). To confirm results obtained from GS10K, some of the analyses were repeated in the
whole 20,000 individual sample (named GS20K).

We first explored the extent to which estimates of i} were inflated by the inclusion of relatives.
We subsequently analysed our data allowing trait variation to be potentially influenced by both
genetic and environmental effects. We assumed that the genetic effects comprised additive genetic
effects associated with genotyped SNPs (1) and additional additive genetic effects associated with
pedigree but not with genotyped SNPs (h7, ), and we assumed that the environmental effects
potentially comprised nuclear family effects (ef) common to both parents and offspring, full-sib-
ling effects (¢?) common to just siblings and couple effects (e?) common to just the members of a
couple (Fig 1). The total heritability, termed A%, in this manuscript, referred to as h7_, in Zaitlen
et al. [12] and comparable to 1, , from traditional pedigree studies, was estimated as the sum of i

and h;,, for each model. To allow estimation of the influence of each effect, we generated five
design matrices: GRMg, GRMyin, ERMgapity, ERMg;, and ERM coyple respectively, where GRM
refers to genomic relationship matrices and ERM refers to environmental relationship matrices.

For brevity, we named different alternative models using abbreviations according to first
subscript letter of the effects examined. We coded ‘G’ for GRMg, ‘K’ for GRMyqy, ‘F’ for
ERMEamily, ‘S for ERMg;p, and ‘C’ for ERM¢gyple—€.g. model ‘GKC’ = GRM, + GRMyy, +
ERMcouple- All models included a residual matrix (allowing effects specific to an individual
that were not shared with any other member of the population).

Table 1. Comparisons of sample sizes, number of non-zero off-diagonal entries and number of pairwise relationships of different degrees between

GS10K and GS20K.

No. IDs
Matrix
G
K

C
S
Degree of Relationship °©

15! degree relatives
2" degree relatives
3" degree relatives
4™ degree relatives
5" degree relatives
unrelated individuals

GS10K GS20K Ratio
9,863 20,032 1:2.03

No. Non-Zero Off-diagonal Entries ? Ratio
48,634,453 ° 200,630,496 1:4.13
8,080 41,174 1:5.10
4,821 20,115 1: 417
1,283 1,767 1:1.38
676 8,495 1: 12.57
No. Pairs Ratio

3,529 18,320 1:5.19
441 7,851 1:17.80
500 4,129 1:8.26
1,099 3,950 1:3.59
3,891 11,032 1:2.84
48,624,993 200,585,162 1:4.13

& The number of off-diagonal entries is calculated in the lower triangular part of all the matrices
® For matrix G, all the off-diagonal entries are different from zero, so the value represents the total number of off-diagonal entries
° Distance of relationship is identified according to an approximate range of the expected pair-wise relatedness, 0.5 to 0.5 for /" degree relatives.

doi:10.1371/journal.pgen.1005804.t001
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Ancestry of the Scots
D1 D2 D3
@ @ @
D4 ID5 ID6
@ @
E Individuals not in data

hzg: The total additive genetic effects captured by
genotyped SNPs. (Variance: ozg ; Matrix: GRMS)

ID 1
1.001
+0.012
0.003
0.220
0.496
0.499

ID 2
+0.012
0.998
0.011
0.007
0.505
0.502

ID 3
0.003
0.011
1.015
0.009
0.001
0.002

ID 4
0.220
0.007
0.009
1.003
0.115
0.136

ID 5
0.496
0.505
0.001
0.115
0.979
0.578

ID 6
0.499
0.502
0.002
0.136
0.578
1.007

ID 1
ID 2
ID 3
ID 4
ID 5
ID 6

h? : The extra genetic effects associated with

pedigree. (Variance: ¢, ; Matrix: GRM,, )

kin 2

ID1|ID2|ID3|ID4|ID5]| ID6
ID1]1.001] O 0 ]0.220]0.496]0.499
ID2] 0 ]0.998] O 0 ]0.505]0.502
ID3] 0 0 |1.015) O 0 0
ID 4 10.220| 0 0 1.00310.115]0.136
ID 5 ]0.496]0.505] 0 ]0.115}0.979]0.578
ID 6 ]0.499]0.502] 0 ]0.136}0.578]1.007

Residuals: The remaining genetic and environmental
effects after accounting for h? , h? %, e? and e*.
g kin P Ve s

(Variance: ¢°_; Matrix: I)

ID1|ID2|ID3|ID4|IDS5]| ID6
ID 1 1 0 0 0 0 0
ID2] O 1 0 0 0 0
ID3] 0 0 1 0 0 0
ID4] 0 0 0 1 0 0
ID5S] O 0 0 0 1 0
ID6] O 0 0 0 0 1

Ir Individuals in data

¢?.: The common environmental effects shared by

family members of a nuclear family. (Variance: ¢°_,

; Matrix: ERM,_ . )
ID1|ID2|ID3|ID4|ID5|ID6
ID 1 1 1 0 0 1 1
ID2| 1 1 0 0 1 1
ID3]| O 0 1 0 0 0
ID4| O 0 0 1 0 0
ID 5 1 1 0 0 1 1
ID6| 1 1 0 0 1 1

¢’ : The common environmental effects shared by a

couple..(Variance: ¢?__; Matrix: ERM,,,.0)
ID1|ID2|ID3|ID4|IDS| ID6
ID1 1 1 0 0 0 0
ID 2 1 1 0 0 0 0
ID3| O 0 1 0 0 0
ID4| O 0 0 1 0 0
ID 5 0 0 0 0 1 0
ID6| O 0 0 0 0 1

¢?: The common environmental effects shared by full-

siblings, which may include non-additive genetics.

(Variance: 6> ; Matrix: ERM; )
ID1|ID2|ID3|ID4|IDS5]| ID6
ID1 1 0 0 0 0 0
ID2| O 1 0 0 0 0
ID3 0 0 1 0 0 0
ID4| O 0 0 1 0 0
ID 5 0 0 0 0 1 1
ID6| O 0 0 0 1 1

Fig 1. lllustration of the model and matrices. The diagram shows the relationship between the tested genetic/environmental effect and the individuals in
an example pedigree. Each colour represents a specific effect and individuals affected by that effect are circled with that colour. People in grey or black are
the people notin or in the data. Examples of how the relationship matrices for those effects look are also given.

doi:10.1371/journal.pgen.1005804.g001
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We identified the most appropriate model for each trait by a stepwise model selection process
via removing non-significant components from the full model based on a Wald test of their esti-
mated effect and a likelihood ratio test (LRT), and we estimated the effects of significant factors
using the selected models in GS10K. We repeated the model selection and corresponding vari-
ance component analyses in GS20K to identify differences resulting from analysing a more com-
plex population structure, encompassing a larger proportion of close relationships.

More details about traits, matrices and models are given in Material and Methods and S1
Table and S2 Table. In the main manuscript, we only list results for the final models identified by
the model selection procedure and the full model, but a comprehensive list of estimates obtained
for the different effects for each trait and each model is available in S3 Table and S4 Table.

Model robustness and the effectiveness of the model selection were tested using simulated
data based on GS10K.

Simulation study: Robustness of the models

We conducted a simulation study using real genotype and pedigree information from GS10K
to evaluate the robustness of our models. To make computation feasible, we mainly focused on
data simulated under the simplest and most complex models (models ‘G’, ‘K’, ‘F’, ‘S’, ‘C’, ‘GK,
‘GF and ‘GKFSC’) and those representing the commonest conclusions of model selection in
analyses of the real GS10K data (models ‘GF’, ‘GFS’, ‘GKC’ and ‘GKSC’). S5 Table shows the
simulated and observed values for each parameter as well as the model we used for analyses in
different scenarios.

In the first scenario, we examined the performance of our models (models ‘G’, ‘K, ‘F, ‘S’ and
‘C’) when simulated phenotypes were only contributed by one of the five corresponding effects
plus residual varjation. Under these models (S5 Table), the mean of overall estimates per parame-
ter was very close to its simulated value, indicating that our design matrices GRMg, GRMyp,
ERMEamily ERMcouple 2nd ERMgy, worked well in simple models and were able to capture their
corresponding effects even when the simulated variance associated with an effect was low (< 3%).

In the second scenario, we evaluated the performance of our models (models ‘GK’ and ‘GF’)
when the simulated phenotypes were determined by SNP-associated genetic effects and one of
the familial effects (either pedigree-associated genetics or nuclear family environment) plus
residual variation. Results (S5 Table) indicate that, in cohort with familial structure, failure to
account for or inaccurate modelling of familial effects (i.e. when models used were inconsistent
with phenotypic contributors) would result in upward bias for i in the presence of relatives.
However, this upward bias due to the confounding familial factors could be eliminated by
either excluding nominally related individuals or using the appropriate models for analysis.
The former method removes the ability to estimate the familial effects as well as reducing the
sample size, whereas using the appropriate models, estimates obtained were very close to their
parameter settings and gave a good idea of the magnitude and approximate values of SNP and
familial effects as well as the total proportion of variance explained by additive genetics
(h, = h? + i), despite the fact that the means of estimates of i}, hy,, and e were usually
significantly different from the original parameter settings.

In the third scenario, we inspected the performance of the full model ‘GKFSC’ and models
selected from analyses of real phenotypes in GS10K other than ‘GF’ (models ‘GFS’, ‘GKC’ and
‘GKSC). Results (S5 Table) demonstrate that all models were robust in terms of the mean of
overall estimates per parameter being either unbiased or very close to original settings.

Fig 2 summarizes the main results from these simulations, showing the overall performance
of our design matrices from simple models to complex models. The median of estimates for
each component was unbiased across simple and complex models, however, the estimates for

PLOS Genetics | DOI:10.1371/journal.pgen.1005804 February 2,2016 6/25
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Fig 2. Boxplots for estimates of each component obtained from models ‘G’, ‘K’, ‘F’, ‘S’, ‘C’, ‘GK’,
‘GKC’, ‘GKSC’ and ‘GKFSC’. X-axis: the contributors to the simulated phenotype and the model used
(matched model); Y-axis: proportion of total phenotypic variance captured by each design matrix. Yellow
lines: simulated value for each component. Parameter settings: h; =0.3, h;, =0.2,e2 =0.1,e; =0.1and e} =
0.05. For example, the 2" boxplot of the 3" graph means that, the simulated phenotypes are contributed by
30%, 20%, 10% and 40% of SNP-associated, pedigree-associated, couple environmental and residual
effects respectively; we conducted variance component analyses for all replicates using the matched model
‘GKC’ and the estimates of e2 range from about 8% to 12% with a mean of 10%, as expected.

doi:10.1371/journal.pgen.1005804.g002
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hi,., € and e2 were quite variable in the full model, probably due to limitations imposed by the

kin?

data structure. All of the above verify the robustness of our models.

Simulation study: Effectiveness of the model selection procedure

Although we confirmed that our models were robust (S5 Table and Fig 2), the potentially high
correlation between ERMpg,mjly matrix and combined ERMcoupie and GRMyg;, matrices may
make it challenging to jointly estimate 17, ¢/ and ¢ accurately in our sample as the standard
errors for those parameter estimates obtained from the full model were high (S4 Table). Thus
the most challenging part of our study may be to precisely dissect pedigree-associated genetic
effects, shared nuclear family environment and shared couple environment. Therefore, we per-
formed model selection using simulated data to test our model selection procedure where sim-
ulated phenotypes were contributed by moderate SNP-associated genetic effects and low
sibling environmental effects plus a) moderate nuclear family environmental effects but low
pedigree-associated genetic effects and couple environmental effects; b) low nuclear family
environmental effects but moderate pedigree-associated genetic effects and couple environ-
mental effects; or ¢) moderate nuclear family environmental effects, pedigree-associated genetic
effects and couple environmental effects. All scenarios included residual variation.

S6 Table shows the parameter settings and the summary of model selection procedure per-
formance for these scenarios. We expected that our model selection procedure was able to
identify SNP genetics (GRMg) and nuclear family environment (ERMgamity) or SNP and pedi-
gree genetics (GRMy,) and couple environment (ERMcouple) 0r SNP and pedigree genetics
and nuclear family and couple environment accordingly, since they were the major factors in
each corresponding scenario.

As results demonstrated, in all situations our model selection procedure generally (>80%)
selected the appropriate model which contains all major components of phenotypic variation.
The remaining times in the first two of these scenarios, pedigree-associated genetic effects or
those plus shared couple environment were selected instead of nuclear family environmental
effects or vice versa, and in the remaining two replicates in the third of these scenarios we
missed pedigree-associated genetic effects. In addition, our model selection never fully detected
all minor contributions to the phenotype in the first two of these scenarios when the minor
effects were too small (e.g. effects contribute to <5% of the phenotypic variance).

Both issues identified above (~20% chance of selecting inappropriate models and failure to
identify all minor effects) are likely to have been due to limitations in the data structure of
GS10K, which provides too few of the appropriate relationships for corresponding effects (ped-
igree-associated genetics, nuclear family, sibling and couple environment) to resolve correla-
tions between parameters and detect minor effects. These limitations have been greatly
ameliorated in the GS20K data.

We also conducted variance component analyses using the final selected model for each
replicate (S6 Table). For those replicates that had appropriate models after model selection, the
estimates of factors that remained in the models were usually close to, and not significantly dif-
ferent from, their simulated values, indicating that the results from selected models were reli-
able. More details about simulation study can be found in S1 Text, S5 Table and S6 Table.

Impact of inclusion of 1! degree relatives on the genomic heritability in
GS10K

In the first analyses of the real data, we looked for evidence of familial effects (either pedigree-
associated genetics or nuclear family environment) in our cohort. As shown by simulation (S5
Table), if there were any familial effects, we should obtain inflated estimates of 42 when we
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Fig 3. Heritability estimates using subpopulations of GS10K with different GRM cut-off points. X-axis: the number of individuals among whom the
pairwise relationship is larger than a specified degree; Y-axis: Heritability estimates with + 2 s.e.

doi:10.1371/journal.pgen.1005804.g003

conducted variance component analyses using model ‘G’ in the presence of relatives, compared
to the estimates of ? given from the unrelated subpopulation. GS10K consists of nearly 10,000
genotyped individuals with multiple degrees of relationship, which allows us to explore the
impact of familial effects on /2 estimation in this cohort.

Table 1 shows the population structure of genotyped individuals in GS10K. The degree of
relationship between two individuals was identified according to an approximate range of the
expected pair-wise relatedness (r), which was from 0.5 to 0.5"*% for i degree relatives (e.g.
pairs of individuals with relatedness from 0.354 to 0.707 were considered as 1** degree
relatives).

With these criteria, GS10K consisted of more than 3,500 pairs of 1** degree relatives, around
450 pairs of 2@ and 500 pairs of 3™ degree relatives, but the majority of pairs of individuals
(over 99.9%) were genetically unrelated (more distant than 5th degree relatives, r < 0.022). In
total, there were around 6,600 unrelated individuals (defined using the criteria described
above) in GS10K.

We estimated h for each trait using model ‘G’ for subpopulations of GS10K made-up of

individuals with different degrees of relatedness (using the upper bound of the expected relat-
edness of each category as GRM cut-off points in GCTA). Fig 3 shows how h estimates for
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height, BMI and HDL changed as we progressively included more closely related individuals in
the relationship matrix. Results for the remaining traits are shown in S3 Table.
In general, i estimates were stable as we gradually added more closely related individuals in

the analyses until the inclusion of 1** degree relatives that resulted in inflation of the estimates
(Fig 3 and S3 Table). Based on our results, i} was overestimated only when 1* degree relatives

were included. For glucose and DBP, the h estimates did not appear inflated after 1* degree rela-

tives were included, suggesting that these traits were not affected by familial effects (S3 Table).

Variance component analyses using the full model ‘GKFSC’ and
stepwise model selection in GS10K

The increase in 1 estimates resulting from the inclusion of 1 degree relatives provided evi-
dence of familial variation in our cohort. However, it is not clear whether these familial effects
are due to pedigree-associated genetic effects or shared nuclear family environment or both
because either of them has the ability to inflate h estimates (this was also observed in the simu-

lation data: S5 Table: scenario ii). Therefore, we attempted to tease out this familial variance
from the total phenotypic variance and dissect the familial variation as well as the remaining
trait variation further using the full model ‘GKFSC’ and the stepwise selection procedure to
define a final model containing the most important effects contributing to trait variation.

Table 2 shows the results for final models selected from stepwise model selection strategies
and for the proportions of total phenotypic variance explained by different effects using final
models, as well as for those obtained using the full model.

The mean estimates for 13, hj,, e/, e’ and e’ across all traits in the full model were 0.18,

0.22,0.03, 0.03 and 0.11, respectively. However, the majority of estimates for parameters other
than h? obtained using the full model were not significantly different from zero according to

either the Wald test or LRT performed and had large standard errors in general. These results
suggest that the full model ‘GKFSC’ may suffer from the inclusion of correlated factors, as fore-
seen in the simulation study, probably due to a low number of different types of pairwise rela-
tionship in GS10K.

Therefore, we utilised a model selection procedure designed to provide more precise esti-
mates of the parameters retained in a more robust and parsimonious final model, where the
least significant effects are removed from the model. More details about the selection procedure
are given in Material and Methods. We have demonstrated the effectiveness of our model selec-
tion procedure by simulation in the previous section and S6 Table.

As shown in Table 2, SNP-associated genetic effects (represented by GRM,) were retained
in the final models for all 16 traits, indicating that all traits examined here are heritable.
Regarding variation associated with families, pedigree-associated genetic effects (represented
by GRMy,) and nuclear family environmental effects (represented by ERMgamiry) Were
retained in the final models for 10 and 4 out of 16 traits respectively. However, in GS10K, the
data structure did not allow for both familial effects to be retained together in the final models
for any trait. Additionally, the final models for glucose and DBP included neither GRMy;,, nor
ERMGE, iy, which is consistent with the previous conclusion derived from S3 Table, suggesting
that familial effects may be limited for these traits.

The additional environmental influences of couple environmental effects (represented by
ERMoupie) Were retained in the final models for 12 out of 16 traits and sibling environmental
effects (represented by ERMg;;,) only remained for creatinine and TC.

Although the final model varied between traits, the model ‘GKC’ was most often selected (9
out of 16 traits) in the model selection procedure in GS10K. Therefore, this suggests that the
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Table 2. Results of variance component analyses for anthropometric and cardiometabolic traits using final models selected from the stepwise
model selection and the full model in GS10K.

Trait Model GRM, GRMyin ERMeamily ERMs;, ERMcoupie
h?, (s.e.) W, (s.e.) e? (s.e.) e (s.e.) e (s.e.)
Anthropometric Traits
Height Selected GKC 0.47(0.04) 0.36(0.05) 0.16(0.03)
Full GKFSC 0.45(0.04) 0.36(0.17)NS 0.00(0.08)NS 0.02(0.03)NS 0.17(0.09)NS
Weight Selected GF 0.28(0.03) 0.18(0.02)
Full GKFSC 0.28(0.04) 0.17(0.17)NS 0.10(0.09)NS 0.01(0.04)NS 0.09(0.09)NS
Fat Selected GKC 0.26(0.04) 0.26(0.06) 0.19(0.03)
Full GKFSC 0.26(0.04) 0.21(0.18)NS 0.02(0.09)NS 0.02(0.04)NS 0.16(0.09)
BMI Selected GKC 0.25(0.04) 0.33(0.05) 0.21(0.03)
Full GKFSC 0.25(0.04) 0.19(0.17)NS 0.07(0.09)NS 0.00(0.04)NS 0.14(0.09)
Hips Selected GKC 0.21(0.04) 0.27(0.06) 0.17(0.03)
Full GKFSC 0.21(0.04) 0.18(0.18)\S 0.05(0.09)N® 0.00(0.04)\® 0.12(0.09)N®
Waist Selected GKC 0.16(0.04) 0.36(0.06) 0.20(0.03)
Full GKFSC 0.15(0.04) 0.44(0.17)NS 0.00(0.09)NS 0.00(0.04)NS 0.24(0.09)
WHR Selected GKC 0.15(0.04) 0.19(0.06) 0.09(0.03)
Full GKFSC 0.13(0.04) 0.29(0.17)NS 0.00(0.09)NS 0.00(0.04)NS 0.13(0.09)NS
ABSI Selected GKC 0.10(0.04) 0.19(0.06) 0.05(0.03)
Full GKFSC 0.08(0.04) 0.27(0.17)NS 0.00(0.08)NS 0.00(0.04)NS 0.08(0.09)NS
Cardiometabolic Traits
Urea Selected GF 0.13(0.03) 0.10(0.02)
Full GKFSC 0.15(0.04) 0.00(0.17)NS 0.08(0.09)NS 0.00(0.05)NS 0.04(0.09)
Creatinine Selected GKSC 0.24(0.04) 0.45(0.05) 0.07(0.03) 0.16(0.03)
Full GKFSC 0.24(0.04) 0.39(0.18) 0.03(0.09)NS 0.07(0.04) 0.13(0.09)NS
Glucose Selected GC 0.19(0.03) 0.05(0.03)
Full GKFSC 0.19(0.04) 0.00(0.17)NS 0.00(0.09)NS 0.09(0.05)N® 0.05(0.09)
TC Selected GFS 0.17(0.03) 0.09(0.02) 0.12(0.04)
Full GKFSC 0.15(0.04) 0.12(0.18)NS 0.05(0.09)NS 0.12(0.04) 0.02(0.09)NS
HDL Selected GKC 0.30(0.04) 0.26(0.05) 0.15(0.03)
Full GKFSC 0.29(0.04) 0.35(0.16)NS 0.00(0.08)NS 0.01(0.04)NS 0.19(0.08)NS
SBP Selected GKC 0.15(0.04) 0.13(0.06) 0.10(0.03)
Full GKFSC 0.14(0.04) 0.18(0.18)NS 0.00(0.09)N® 0.08(0.05)NS 0.13(0.09)NS
DBP Selected GC 0.17(0.03) 0.09(0.03)
Full GKFSC 0.13(0.04) 0.00(0.18)NS 0.04(0.09)NS 0.03(0.05)N® 0.03(0.09)NS
HR Selected GF 0.14(0.03) 0.10(0.02)
Full GKFSC 0.03(0.04)NA 0.00(0.18)NS 0.10(0.09)NS 0.00(0.05)NS 0.00(0.10)NS

NS Not significant. That variance component is non-significant according to LRT with p-value > 0.05.
NA Not available. Cannot test the significance of that variance component because the failure in the reduced model.

doi:10.1371/journal.pgen.1005804.t002

common environment shared by couples, SNP-associated and pedigree-associated genetic

effects are important for the control of a large proportion of the human complex traits we

examined, while the shared family and full-sibling environment have a more limited impact
SNP-associated genetic effects (GRM) in the final models provided estimates of i} ranging

between 0.10 and 0.30 with a mean of 0.19 for the 15 traits, excepting height for which nearly
half of its phenotypic variation (0.47) was SNP-associated.
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For the 10 traits that retained pedigree-associated genetic effects (GRMyy) in the final mod-
els, the estimates of 47, ranged from 0.13 to 0.36 with a mean of 0.26, except for creatinine for
which nearly half of its phenotypic variation (0.45) was pedigree-associated. For the 10 traits
that retained both GRM, and GRMyy, in the final models, the estimates of &, accounted for
56% of the total heritability (i, = hZ + k).

Regarding nuclear family environmental effects, the estimates of ¢; for 4 traits that retained
ERMgamily in the final models were of 18% for anthropometric and of 10% for cardiometabolic
traits.

Creatinine and TC were the only two traits for which the common sibling environment
(ERMg;p,) was kept in the final models, and e? contributed 7% and 12% of their phenotypic var-
iance respectively.

For those 12 traits that demonstrated evidence of couple effects (i.e. retained ERMcqypie in
the final models), e* accounted for 13.5% of the phenotypic variance on average (of 15% for
anthropometric traits and of 11% for cardiometabolic traits).

Compared to the results from the full model in Table 2, using the selected final models pro-
vided similar but more precise (i.e. with smaller standard errors) parameter estimates. There-
fore, whereas the full models gave a general picture of the important components in the
architecture of the traits, the final selected models provided a parsimonious model with more
precise estimates of the most important effects.

Results for model selection and corresponding variance component
estimates in GS20K analyses

We added an extra 10,000 genotyped and phenotyped individuals from the same population,
providing 20,000 individuals in total, in order to confirm and build upon the results of the
model selection in a more complex data set. The difference in sample sizes and numbers of dif-
ferent relationships between GS10K and GS20K is shown in Table 1. The extra 10,000 geno-
typed individuals in GS20K consisted mainly of the relatives of those already genotyped in
GS10K, which substantially increased the proportion of 2" and 3" degree and sibling relation-
ships in GS20K. We repeated the model selection procedure and corresponding variance com-
ponent analyses using selected models in GS20K to identify changes resulting from the
increased complexity and sample size of the population.

Results for model selection and variance component analyses using the final selected model
as well as the full model are shown in Table 3. In general, the parameter estimates obtained
from the full model in GS20K were similar to those obtained from the full model in GS10K but
the number of non-significant estimates were much lower due to smaller standard errors. Note
that standard errors of estimates are not only reduced using GS20K, but, unlike results from
GS10K in Table 2, are also similar between full and reduced models, suggesting the change is
due to improved structure of the data to separate effects as well as increased sample size.

The final models selected from model selection in GS20K were generally similar to those in
GS10K, but, owing to the presence of more nuclear family members and siblings in GS20K, we
now had better power to detect the past environmental effects (either nuclear family environ-
ment or sibling environment), although the estimated effects were usually small. Moreover,
due to an increased number and higher proportion of 2" and 3™ degree relatives, we had bet-
ter resolution for familial effects in GS20K. Pedigree-associated genetics and nuclear family
environment were now separable and the data structure in GS20K can provide sufficient evi-
dence for both types of familial effects. For weight, urea, TC and HR, familial effects switched
from nuclear family environment in GS10K to pedigree-associated genetics or pedigree-associ-
ated genetics plus nuclear family environment in GS20K. However, as in GS10K (Table 2 and

PLOS Genetics | DOI:10.1371/journal.pgen.1005804 February 2,2016 12/25



@’PLOS | GENETICS

The Influence of Genes, Pedigree and Family Environment on Health-Related Traits

Table 3. Results of variance component analyses for anthropometric and cardiometabolic traits using final models selected from the stepwise
model selection and the full model in GS20K.

Trait

Height

Weight

Fat

BMI

Hips

Waist

WHR

ABSI

Urea

Creatinine

Glucose

TC

HDL

SBP

DBP

HR

Model

Selected
Full
Selected
Full
Selected
Full
Selected
Full
Selected
Full
Selected
Full
Selected
Full
Selected
Full

Selected
Full
Selected
Full
Selected
Full
Selected
Full
Selected
Full
Selected
Full
Selected
Full
Selected
Full

GKFC
GKFSC
GKFC
GKFSC
GKSC
GKFSC
GKFC
GKFSC
GKFC
GKFSC
GKSC
GKFSC
GKSC
GKFSC
GKSC
GKFSC

GKSC
GKFSC
GKSC
GKFSC
GSC
GKFSC
GKSC
GKFSC
GKSC
GKFSC
GKSC
GKFSC
GSC
GKFSC
GKSC
GKFSC

GRM, GRMyin
H?, (s.e.) %, (s.e.)
Anthropometric Traits
0.43(0.02) 0.45(0.04)
0.43(0.02) 0.44(0.04)
0.27(0.02) 0.27(0.05)
0.27(0.02) 0.27(0.05)
0.24(0.02) 0.25(0.05)
0.24(0.02) 0.22(0.05)
0.25(0.02) 0.23(0.05)
0.25(0.02) 0.23(0.05)
0.22(0.02) 0.20(0.05)
0.22(0.02) 0.20(0.05)
0.19(0.02) 0.31(0.03)
0.19(0.02) 0.25(0.05)
0.11(0.02) 0.19(0.03)
0.11(0.02) 0.22(0.05)
0.11(0.02) 0.21(0.03)
0.10(0.02) 0.24(0.05)
Cardiometabolic Traits
0.15(0.02) 0.10(0.03)
0.14(0.02) 0.16(0.05)NS
0.23(0.02) 0.37(0.03)
0.21(0.02) 0.46(0.05)
0.17(0.02)
0.15(0.02) 0.00(0.05)\S
0.19(0.02) 0.14(0.03)
0.19(0.02) 0.12(0.06)
0.27(0.02) 0.29(0.03)
0.27(0.02) 0.27(0.05)
0.12(0.02) 0.07(0.03)
0.12(0.02) 0.08(0.05)NS
0.16(0.02)
0.14(0.02) 0.00(0.05)NS
0.14(0.02) 0.12(0.03)
0.14(0.02) 0.10(0.05)

E|:"\IIFamily
e? (s.e.)

0.01(0.02)
0.01(0.02)
0.05(0.02)
0.04(0.02)N®
0.02(0.02)NS
0.05(0.02)
0.04(0.02)
0.05(0.02)
0.05(0.03)
0.03(0.02)NS

0.00(0.03)N®

0.00(0.03)N®

0.00(0.03)NS
0.00(0.02)NS
0.03(0.03)NS
0.01(0.03)NS
0.01(0.02)NS
0.00(0.03)N®
0.02(0.03)NS

0.01(0.03)NS

NS Not significant. That variance component is non-significant according to LRT with p-value > 0.05.

doi:10.1371/journal.pgen.1005804.t003

ERMs;p

e (s.e.)

0.01(0.01)NS

0.02(0.01)NS
0.04(0.01)
0.03(0.01)

0.01(0.01)NS

0.01(0.01)N®
0.04(0.01)
0.03(0.01)
0.04(0.02)
0.03(0.02)
0.03(0.02)
0.02(0.02)NS

0.03(0.02)
0.03(0.02)NS
0.07(0.01)
0.07(0.01)
0.05(0.01)
0.04(0.02)
0.07(0.02)
0.06(0.02)
0.03(0.01)
0.02(0.01)
0.07(0.02)
0.07(0.02)
0.08(0.01)
0.06(0.02)
0.04(0.02)
0.04(0.02)

ERMCoupIe

e (s.e.)

0.12(0.02)
0.11(0.02)NS
0.13(0.03)
0.13(0.03)
0.19(0.02)
0.17(0.03)
0.15(0.03)
0.15(0.03)
0.12(0.03)
0.12(0.03)
0.18(0.02)
0.15(0.03)
0.08(0.03)
0.09(0.03)
0.05(0.03)
0.07(0.03)NS

0.13(0.03)
0.16(0.03)
0.11(0.02)
0.14(0.03)\S
0.05(0.02)
0.03(0.03)\S
0.06(0.02)
0.05(0.03)NS
0.13(0.02)
0.11(0.03)
0.09(0.02)
0.09(0.03)
0.09(0.02)
0.07(0.03)
0.07(0.02)
0.06(0.03)

S3 Table), there was still no evidence of either genetic or environmental familial effects for glu-
cose and DBP in GS20K. The results from final selected models in GS20K are summarized in

Fig 4.

The heritability estimate is nearly 90%, 60% and 60% for height, creatinine and HDL respec-
tively, and for the remaining anthropometric and cardiometabolic traits, it ranges from 30%-
50% and 20-30% for the two types of trait, respectively (Fig 4B). Although the proportion of
genetic variance explained by SNP-associated and pedigree-associated genetic effects varies
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13/25



“®
@ : PLOS | GENETICS The Influence of Genes, Pedigree and Family Environment on Health-Related Traits

a ESNP M Pedigree HCouple DSib @ Family

100%

80%

6

ic variance
o
X

yp

]
=

2

Proportion of ph
o
X

Q

%

b O Heritability @ Environment

100% ——

80%

60% —

40%

20%

Proportion of phenotypic variance explained

0%

>
S P < & <& 0.52 &

%

& & " N C3
& ¢ ¢S

[ ESNP M Pedigree
100%

$ & o
& $¢ {gb K3

'S o 0
S S S
X X X

Proportion of genetic variance explained

N
o
X

Q

s
& ¢

PLOS Genetics | DOI:10.1371/journal.pgen.1005804 February 2,2016 14/25



@’PLOS | GENETICS

The Influence of Genes, Pedigree and Family Environment on Health-Related Traits

Fig 4. Results of variance component analysis using final selected models for anthropometric and
cardiometabolic traits in GS20K. X-axis: names of phenotype; Y-axis: proportion of phenotypic/genetic
variance explained by the different components. a) Proportion of phenotypic variance explained by genetics
and environment for each trait. b) Proportion of phenotypic variance explained by different components kept
in the selected model for each trait. c) Proportion of genetic variance explained by SNP-associated and
pedigree-associated genetic effects.

doi:10.1371/journal.pgen.1005804.g004

across traits, each genetic effect explains around 50% of the genetic variance on average (Fig
4C). In GS20K, the most commonly selected model was ‘GKSC’ (10 out of 16 times, Fig 4A
and Table 3). SNP-associated genetic effects, pedigree-associated genetic effects, sibling envi-
ronment and couple environment appeared in the final models for 16, 14, 12 and 16 out of 16

times respectively and the means of estimates for 12, hZ,,, e? and e’ for traits which retained
corresponding matrices (GRMg, GRMyin, ERMg;, and ERMcouple respectively) in the final
models were of 0.20, 0.23, 0.05 and 0.11 respectively (Fig 4A and Table 3). For the nuclear fam-

ily environment, the mean of estimates for ef2 for 4 traits which retained ERMgamiry in final

models was of 0.04 (Fig 4A and Table 3). On average across traits, our environmental matrices
and the final selected models retained through our model selection procedure could explain
~16% and ~56% of the total phenotypic variance respectively (Fig 4B).

The major change in GS20K compared to GS10K is the significant evidence of effects of the
sibling environment, particularly for cardiometabolic traits, resulting from the higher propor-
tion of sibling relationships in GS20K (more than 12 times compared to GS10K, Table 1).
However, the sibling effects were only 5% on average and were still relatively low compared to
genetic effects and couple environment. Therefore, despite the change in population structure
in GS20K, the major components for anthropometric and cardiometabolic traits were SNP-
associated and pedigree-associated genetic effects and couple environment as they were in
GS10K (Table 2).

Discussion

The aim of this study was to better understand the architecture of human complex traits by dis-
secting phenotypic variation into SNP-associated additive genetic variation (h3), pedigree-asso-
ciated genetic variation (h,,) and environmental influences of common environment shared
by nuclear family members (efQ), full-siblings (e?) and couples (e?). We generated five design
matrices GRMg, GRMyip, ERME,mity, ERMgj, and ERMgoypie to describe the five effects and
we examined 16 human complex traits using genome-wide genotype data and genealogical
information in the Generation Scotland: Scottish Family Health study (GS:SFHS) comprising
samples from up to 20,000 individuals.

The results of these analyses suggest that SNP-associated genetic effects, pedigree-associated
genetic effects and current environment shared by couples were the major contributors to phe-
notypic variation for anthropometric and cardiometabolic traits. Past environmental influ-
ences, such as shared sibling environment or nuclear family environment, made relatively
small or undetectable contributions to trait variation (Table 2 and Table 3). The relative impor-
tance of a couple or spousal effect for most traits was also noted by Liu et al. [22], in analyses
based only on pedigree relationships, although they did not find a significant spousal effect for
cholesterol, HDL or glucose for which a significant couple effect was detected in this study.

Considering the low number of non-zero off-diagonal entries in ERM¢oyple (1,283 or 1,767
pairs in GS10K or GS20K), the signal of couple effects was quite strong. We did observe signifi-
cant phenotypic correlation between couple pairs for almost all traits in our data (S7 Table).
For some traits this presumably represents current shared environment due to cohabitation,
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such as living habits and diet. For traits related to obesity, it is reasonable that current environ-
mental effects are more important than past environmental effects since traits like BMI, fat,
HDL and blood pressure are potentially influenced by recent food intake, exercise and medical
treatment.

It should be noted that in our sample participants have an average age of ~50 years and indi-
viduals currently sharing a common household environment will largely be couples, whereas
most individuals involved in sibling and parent-offspring relationships will no longer be cohab-
iting at the point when the data were recorded. It has been previously reported in obesity stud-
ies that common childhood environment only affects individuals in their mid-childhood but
the influence does not last past adolescence [23,24]. Therefore, although the impacts of nuclear
family or sibling environmental effects on the 16 traits we examined were relatively small, fam-
ily and sibling environmental effects could be more important in younger cohorts and might
be of greater importance for other complex traits and diseases where long-term environment
may have an influence on a phenotype that is relatively stable over time.

For some traits, the most obvious example being height, couple effects may also, in part or
completely, reflect assortative mating. A study by Keller et al. has shown that h” estimate for
height would be 13% higher with assortative mating than it would have been under random
mating [23]. If there was assortative mating for any of the traits which retained ERM¢oyple in
final models but we modelled the couple correlation as an environmental effect, we would
expect to obtain biased e’ estimates. Moreover, modelling assortative mating as an environ-
mental effect removes variance from the residual (“error”) variance. We therefore might obtain
an inflated h; estimate if we have not taken assortative matting into account and reduce the
residual variance as a consequence of modelling assortative matting as an environmental effect.
In addition, assortative mating will have consequences for our interpretation of GWAS results
as the combined effect of detected loci on the trait variance will be greater than the sum of the
effects of the individual loci due to the positive correlations between loci. However, except for
height, where the phenotype will be largely fixed by the time of marriage, for most traits it is
difficult to determine whether assortative mating and/or shared environment are responsible
for observed phenotypic correlations between couples.

Shared sibling environment was undetected for most of the traits in GS10K (Table 2),
whereas there was significant evidence of it for many traits in GS20K (Table 3), indicating that
the detection power of sibling environment benefits from the increase in number and propor-
tion of sibling relationships (Table 1). Sibling effects, where detected, explained 5%, on average,
of the trait variation. Estimated sibling effects may be inflated by non-additive genetics, (i.e.
dominance and epistasis). As sibling effects only capture a fraction of the non-additive varia-
tion, the actual variation contributed by non-additive genetics might potentially be large and
would merit further study.

Our analyses split the genetic variation approximately equally on average across traits
between that which was associated with SNPs (hf,) and that which was associated with pedigree
(hi;,)- A plausible interpretation for the division of genetic effects into 1} and ki, is that h is
able to explain the genetic variation attributed by common variants inherited from distant
ancestors that are in LD at the population level and are well captured due to association with
genotyped SNPs [12]. On the other hand, k},, accounts for the genetic variation due to rare var-
iants, CNVs and other structural variation, etc. that cluster in specific families and are captured
due to strong linkage in high-order pedigrees but are not in population-wide LD with common
SNPs.

We compared h} and h,, (calculated as i + h;,) estimates obtained in final models from

model selection in GS20K to two relevant publications from Zaitlen et al. [12] and Vattikuti
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Table 4. Comparisons of the results from final models in GS20K to previous published results.

Trait

Height
BMI
WHR
Glucose
HDL
SBP

Trait

Height
Weight
Fat

BMI

Hips
Waist
WHR
Urea
Creatinine
Glucose
TC

HDL

SBP

DBP

HR

ah

2
gkin

doi:10.1371/journal.pgen.1005804.t004

is an equivalent estimate to h?

i(s.e.)
0.43(0.02)
0.25(0.02)
0.11(0.02)
0.17(0.02)
0.27(0.02)
0.12(0.02)

2
ped

Family-based GREML Studies

Final models Publications
7. (s.e.) Ii(s.e.) /1,2 (se.)
0.88(0.03) 0.40[12] 0.69 [12]
0.48(0.04) 0.14-0.23 [12,19] 0.34-0.42 [12,19]
0.30(0.03) 0.06-0.13 [12,19] 0.19-0.28 [12,19]
0.17(0.02) 0.10[19] 0.33[19]
0.56(0.03) 0.12-0.24 [12,19] 0.45-0.48 [12,19]
0.19(0.03) 0.24 [19] 0.30 [19]
Twin Studies
Final models Publications

I, (s.e.) i, (s.e.)

0.88(0.03) 0.89-0.93 [6]

0.54(0.04) 0.64-0.84 [24]

0.49(0.04) 0.59-0.63 [25]

0.48(0.04) 0.48-0.61 [26]

0.42(0.04) 0.52-0.58 [25]

0.50(0.03) 0.46 [27]

0.30(0.03) 0.31[27]

0.25(0.03) 0.36-0.54 [29]

0.60(0.03) 0.37 [28]

0.17(0.02) 0.45 [30]

0.33(0.03) 0.46-0.57 [26]

0.56(0.03) 0.50-0.62 [26]

0.19(0.03) 0.57 [31]

0.16(0.02) 0.45 [31]

0.26(0.03) 0.64 [31]

but is calculated using genomic information

et al. [19] that also explored the influence of including relatives on h* estimation in family-
based studies and compared k3, estimates obtained in final models in GS20K to published

twin studies [6,24-31]. Comparisons are shown in Table 4.

When comparing with two family-based GREML studies (Table 4), our h}

and K

kin €STi-

mates from final models are generally higher than published relevant results, except for the h?

estimate for SBP and the 1, estimates for glucose and SBP. When comparing with twin stud-
ies (Table 4), our 2, estimates for all anthropometric traits, urea, TC and HDL given by final
selected models in GS20K are reasonably close to reported 4, ; estimates, which suggests little
missing heritability. Hence, our results provide no evidence that heritabilities given by previous
twin studies were inflated for these traits. For glucose, SBP, DBP and HR, however, our h,,,
estimates are significantly lower than previously published estimates of /2 ,, whereas for creati-
nine, h;km is significantly larger.

To validate the analytical approach used in this study and to evaluate model robustness, we
conducted a detailed simulation study using real genotype and pedigree information obtained
from GS10K. The simulation results confirmed that our models were generally robust (S5
Table). However, the inevitable correlations between our design matrices can, under some
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circumstances, make it challenging to partition variance for correlated factors in variance com-
ponent analyses and accurately discriminate between competing models in model selection.
Nonetheless, any influence of inaccurately partitioning variance among correlated matrices
was relatively limited and our models were always able to provide us with a good idea of the
magnitude of corresponding effects as the mean estimate for each parameter was always very
close the simulated settings when the model used for analysis matched the simulated sources of
trait variation.

The effectiveness of the model selection procedure was also validated using the simulated
data with the model selection procedure often (>80%) resulting in models containing all major
phenotype components (S6 Table). However, due to the limited number of appropriate rela-
tionships in GS10K to resolve correlations between matrices and to detect factors with small
effects, our model selection procedure may omit minor effects (contributing 5% or less of the
trait variance, for example). In addition, the procedure may sometimes identify incorrect mod-
els (not being able to distinguish familial effects as mentioned in the simulation study and S6
Table) and this might be the case for weight, urea, TC and HR in Table 2. However, with suffi-
cient data from higher order pedigree relationships, as was the case in GS20K, the impact of
covariances between design matrices in first order relatives (parent-offspring, siblings and cou-
ples) are mitigated and further components of variance became separable (Table 3).

To sum up, we provide evidence that for the traits we have analysed, heritabilities are
divided approximately evenly between pedigree-associated and SNP-associated genetic effects.
This is the case even when, as here, we have taken care to consider various models of environ-
mental covariation of first-degree relatives (including couples). It appears that confounding
factors like dominance, shared full-sibling environment and the past rearing environment
seem to have relatively small contribution to phenotypic variation for these traits in our popu-
lation. We find that current shared environment of couples is able to account for another
~11% on average of the phenotypic variation of human complex traits. This has been seldom
mentioned in previous heritability studies but we note that as an effect that inflates the covari-
ance between nominally unrelated individuals, it should not substantially bias or inflate A,

and . It should be taken into account that couple effects may also be present in cohorts of

unrelated individuals which may often include couples but ignore any correlation between
them. Therefore, it might bias h? from genotype-based studies which do not account for such

couple effects and could have an impact on GWAS studies.

Opverall, our work shows that SNP-associated genetic effects, pedigree-associated genetic
effects and current shared couple environmental effects are three fundamental components of
phenotypic variation for traits related to anthropometrics and cardiometabolism and current
shared environmental effects have more impact than past shared environmental effects. This
also has implications for models to be used in further studies of the architecture of complex
traits including utilising the appropriate models for GWAS and related analyses and for per-
sonalised disease risk prediction.

Materials and Methods
Ethics statement

The data were obtained from the Generation Scotland: Scottish Family Health Study (GS:
SFHS). Ethical approval for the study was given by the NHS Tayside committee on research
ethics (reference 05/s1401/89) and participants provided written consent. Governance of the
study, including public engagement, protocol development and access arrangements, was over-
seen by an independent advisory board, established by the Scottish government
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Data description

Our dataset came from the Generation Scotland Scottish Family Health Study (GS:SFHS) proj-
ect (http://www.generationscotland.org), which was collected by a cross-disciplinary collabora-
tion of Scottish medical schools and the National Health Service (NHS) from Feb 2006 to Mar
2011 [21,32].

Data for 16 complex traits were used. These were 8 anthropometric traits: height, weight,
fat, body mass index (BMI = Weight | hips, waist, waist-to-hips ratio (WHR) and a body shape

Height?

. i ioht5/6 . . .
index (ABSI = Yo C‘“‘;;‘:;gjffﬂe‘gh‘ ) [20] and 8 cardiometabolic traits: levels of creatinine,

urea, total cholesterol (T'C) and high density lipoprotein (HDL) in serum and glucose in blood
after a four hour fast period, systolic blood pressure (SBP), diastolic blood pressure (DBP) and
heart rate (HR). None of the traits was adjusted for medication or fasting status. We explored
the phenotypic distributions of these traits and conducted natural logarithm transformations
for them, except for height, sodium and fat, to obtain approximate normal distributions. We
set phenotypes with values greater or smaller than the mean + 4 standard deviations (after
adjusting for sex, age and age®) to missing.

Data also contained the information of sex, age, clinics where the phenotypes were mea-
sured and Scottish Index of Multiple Deprivation (SIMD, an environmental ranking based on
living areas, [33]). A descriptive analysis can be seen in S1 Table.

The first set of analyses presented in the manuscript are based on a data set of nearly 10,000
individuals from GS:SFHS (GS10K). These have multiple degrees of kinships, including 5,061
family members from 1,612 nuclear or extended families, and were genotyped with the Illu-
mina OMNiExpress chip (707,686 SNPs). We conducted data quality control in Plink v1.07
[34] and GenABEL v1.7-6 [35]. SNPs with a minor allele frequency (MAF) < 0.05, a Hardy-
Weinberg Equilibrium’s (HWE) p-value <10~ and a missingness > 2% were excluded. Dupli-
cate samples, gender discrepancies and individuals with more than 5% missingness were also
removed. After the quality control we kept 9,863 individuals genotyped for 550,796 common
SNPs over the 22 autosomes.

An extended dataset (GS20K) was used to validate the results obtained with GS10K and
evaluate the effect of including further close relationships in our data. The extra 10,000 individ-
uals were genotyped with the same chip and quality control was performed using the same cri-
teria as in the GS10K. After quality control, GS20K consisted of 20,032 individuals, 18,293 of
whom came from 6,578 nuclear or extended families, and 519,729 common SNPs across the 22
autosomes.

A comparison of the difference in relationships between GS10K and GS20K can be seen in
Table 1.

Statistical methods

Our model allows trait variation to be influenced by the genetic effects associated with SNPs
(h;) and pedigree (17, ) and the environmental effects shared by families (e}z), couples (e?) and

full-siblings (e?), (Fig 1). To estimate the influence of each effect, we generated five design
matrices: GRMg, GRMyin, ERMgamitys ERMg;p, and ERMcoyple-

Genomic relationship matrices

A genomic relationship matrix (GRM) contains estimated genomic relatedness between pairs
of individuals calculated from identity-by-state marker relationships as in Yang et al. [16,17].
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Each off-diagonal entry in the GRM represents the realised genomic relationship between a
pair of individuals:

_Z p,) (% — 2p;)
2p l—p)

i=1

where, p; is the minor allele frequency (MAF) for SNP i, x;; or x;; is the allelic dose for individ-
ual j or k at locus i (x = 2 if the individual carries two rare alleles, x = 1 if the individual is het-
erozygous, x = 0 if the individual carries two common alleles) and N is the total number of
SNPs.

Each entry on the diagonal represents the inbreeding coefficient calculated as:

(1 +2p,)x; + 2p7
}1 i
Y Z 2p; 1—p)

i=1

We used GCTA [16] to generate GRM, and obtained GRM,;, by modification of GRM, in R
[36]. Their definitions are identical to matrices Kips and Kygs-., in Zaitlen et al. [12] respectively.

GRM,: a GRM estimated using all common SNPs, and designed to capture the additive
genetic variance explained by common SNPs in the population sample.

GRMy;,,: a modified GRM calculated as in Zaitlen et al. [12] designed to estimate the extra
genetic effects associated with pedigree, the variance explained by shared genetic factors in
close relatives. GRMyq, Was created by setting to 0 all entries in GRM, smaller than 0.025.

The number of entries different from 0 in each of the matrices is shown in Table 1.

Environmental relationship matrices

An environmental relationship matrix (ERM) is a covariance matrix designed to capture the
variance due to common environmental effects shared among a specified group of individuals.
The ERM coefficient for each pair of individuals is 1 in if they share a particular environ-
ment, e.g., living in the same area or coming from the same family; otherwise, it is 0. Each entry

on the diagonal is 1.

We generated 3 different ERMs in R [36]: ERMcoupies ERMg;, and ERMEgmity-

ERM oupie: ERMcoupie Was designed to capture the common environmental effects shared
between a couple. The ERM coefficient of two individuals was 1 if they were identified as a cou-
ple, defined as a pair of individuals with at least one offspring within GS:SFHS. Each entry on
the diagonal was 1.

ERMg;,,: ERMg;, was designed to capture the common environmental effects shared
between full-siblings. The ERM coefficient of two individuals was 1 if they were identified as
full-siblings. Each diagonal entry was 1.

ERMEamily: ERMEamity was designed to capture the common environmental effects shared
within each nuclear family comprising parents and offspring. The ERM coefficient of two indi-
viduals was 1 if they were identified as a parent-offspring pair, full-siblings or a couple. The
ERM coefficient of two individuals was 1 if they were identified as nuclear family members,
including parent-offspring, couple and full-sibling relationships. Each diagonal entry was 1.

The number of entries different from 0 in each of the environmental matrices is shown in
Table 1. Details about model and matrices we defined can be seen in Fig 1.

Variance component analysis

We used the genomic and environmental matrices described above to partition the phenotypic
variance observed for the traits using a mixed model in a restricted maximum likelihood
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(REML) framework. The analyses were implemented in GCTA [16]. The equations used to
evaluate each model were the subsets of the full model:

y=XB+8, 8. +e;+e,+e +e, with

V = GRM, 0’ +GRM,, 0%, +ERMy, . 0+ ERMg;, 0> + ERM,,.,,0°.+ 15

Family Couple ™ ec

where y is an 7 X 1 vector of observed phenotypes with 7 being the sample size (number of indi-
viduals), and V the total phenotypic variance matrix, § is an m x 1 vector of fixed effects with m
being the total level of covariates and X its design matrix with dimension # x m, ggisann x 1
vector of the total additive genetic effects of the individuals captured by genotyped SNPs with
8,~N(0, GRM,02), guin is an 1 x 1 vector of the extra genetic effects associated with the pedi-

gree for relatives with g,; ~N (0, GRM,,, 63, ), es €s and e  are n x 1 vectors representing the
common environmental effects shared by nuclear family members, full-siblings and couples with
e;~N(0, ERMg,,.., ), e,~N(0, ERMg;, ¢7) and e.~N(0, ERMg, . 07.) and € isan n x
1 vector of residuals. We fitted a range of models including different combinations of effects, and
named them using abbreviations according to the effects used. We used the codes ‘G’ for GRM,,
‘K’ for GRMqp, ‘F for ERMEgamiry> ‘S’ for ERMgy, and “C’ for ERMgoupie —€.8. ‘GKC' = GRMj +
GRMyp, + ERMcouple> and the proportion of total phenotypic variance captured by each matrix
was termed /2, ki, ¢}, e’ and e’ accordingly. All models include a residual matrix and the total
heritability k2, is always the sum of i} + hg,, for any model.

There were 31 different models from all the possible combinations of the five matrices. The
abbreviations for each model and the formulae to estimate each term in each model are listed
in S2 Table. The results for each model are listed in S4 Table.

In addition to the matrices described (including the residual matrix), we always included
the fixed effects of sex, age, age’, sex-by-age interaction, clinic, standardised SIMD and SIMD*
and the first 20 eigenvectors of GRM, (to ameliorate problems associated with data structure).

Stepwise model selection

We conducted a stepwise model selection to find the most appropriate genetic and environ-
mental model for each trait and dissect the phenotypic variation into its components (SNP-
associated additive genetic variance, pedigree-associated genetic effects shared among relatives
and common environmental effects shared among the specified groups including nuclear fam-
ily members, couples and full-siblings).

The stepwise selection began with the full model ‘GKFSC’, where all matrices were fitted
together. We performed a Wald test and a log-likelihood ratio test (LRT, using a mixture distri-
bution of xflf:l, and xjle with a probability of 0.5 [16]) for each component and removed the
component, if any, that was non-significant for both tests at o. = 5% level and had the highest
p-value for the Wald test. We repeated this process until all the remaining components were
significant for at least one test. We did not correct for the limited number of traits analysed so
error rates in this procedure should be considered to be on a per trait basis.

Simulation study

In order to evaluate the robustness of our models and the performance of our stepwise model
selection, we conducted a simulation study. We simulated, based on the real genotypic infor-
mation and the real pedigree, different sets of phenotypes for each of the 9,863 individuals in
GS10K.
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For simulating the genetic effects, we used a similar approach to Zaitlen et al. [12] by divid-
ing the genome into two: even and odd chromosomes, and randomly selecting 550 SNPs from
even and odd chromosomes (approximately 1 from each 500 SNPs), representing the observed
causal loci that were in LD with the SNPs (SNP-associated genetic effects) and the unobserved
genetic variants that were not in LD with the SNP array (pedigree-associated genetic effects)
separately. In a later step, only even chromosomes were used to generate GRMg and GRM gy,
Each locus was assigned an effect size driven from exponential distribution as in Fisher [37]
and the summed effects for even and odd chromosome SNPs were designed to explain /? and
k., of the trait variance respectively.

For environmental factors, we simulated a sibling environmental effect, a couple environ-
mental effect and two nuclear family environmental effects (youth and adulthood environ-
ments) for each individual. The corresponding effect sizes for sibling, couple and nuclear
family environmental effects were derived from N(0, €?), N(0, ¢2) and N(0, ¢7) accordingly

and were the same among full-siblings, between couples and among nuclear family members.
In addition, we simulated a random residual effect for each individual, the residuals were
derived from N(0, e?) where €? represents the proportion of variance remaining in each of the
scenarios. For each scenario, each component (i, 1}, €7, €Z, e7) was given a proportion of the
variance explained and e was 1 — b — hy,, — e’ — e — ¢;. The final phenotypes would be the

sum of these genetic and environmental effects and residuals, and the expected mean and vari-
ance of simulated phenotypes were 0 and 1, respectively. More details about how we simulated
phenotypes can be found in S1 Text.

We evaluated the robustness of our models under situations where phenotypes were con-
tributed by i) one of the five effects, ii) SNP-associated genetic effects and one of the familial
effects (either pedigree-associated genetic effects or nuclear family environmental effects) and
ili) SNP-associated genetic effects, familial effects and other environmental effects. All scenar-
ios included residuals and 50 to 100 replicates were analysed for each scenario. The results of
simulations were evaluated using a Z-test, which tested whether the mean estimate for each
parameter deviated significantly from its simulated value. Note, it was too time consuming to
explore all the possible combinations of models and simulated phenotypes, therefore, we
mainly focused on the models that were selected in model selection procedure for the real phe-
notypes in GS10K (Table 2) as well as the fundamental models of our study. More details about
the parameter settings for these scenarios can be found in S5 Table.

ERMgmily posited a relationship between siblings, parents-offspring and couples is some-
what confounded with the addition of GRMy;,, and ERM ¢oyple» making separation and estima-
tion of these effects (¢7, h;,, and e’) challenging, as confirmed by the results from analysis of
real phenotypes in GS10K (Table 2). Hence, we evaluated the effectiveness of our model selec-
tion procedure under situations where phenotypes were contributed by moderate SNP-associ-
ated genetic effects and low sibling environmental effects plus a) moderate nuclear family
environmental effects but low pedigree-associated genetic effects and couple environmental
effects, b) low nuclear family environmental effects but moderate pedigree-associated genetic
effects and couple environmental effects and ¢) moderate nuclear family environmental effects,
pedigree-associated genetic effects and couple environmental effects. All scenarios included
residuals. More details about the parameter settings for these scenarios can be found in S6
Table. We conducted the model selection procedure for each replicate to see whether the final
model selected matched the simulated phenotypic components for these scenarios (Note: we
ran 10 replicates for each scenario here). In addition, variance component analyses were per-
formed using final selected models for these replicates to see whether the estimates of parame-
ters were close to their simulated values.
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